Suurin sallittu kuormitus lattialaattaan

Lattian lattian järjestämiseen sekä yksityisten esineiden rakentamiseen käytettyjen betoniterästen, joissa on onteloita. Ne ovat kytkentäelementti esivalmistetuissa ja esivalmistetuissa monoliittisissa rakennuksissa, jotka takaavat niiden kestävyyden. Tärkein ominaisuus on kuormitus lattialaattaan. Se määritetään rakennuksen suunnittelussa. Ennen rakennustyön aloittamista on suoritettava laskelmat ja peruskannan kuormituskyky arvioidaan. Laskelmien virhe vaikuttaa haitallisesti rakenteen lujuuteen.

Kuormitus ontopelissä on päällekkäin

Onton ydinlaattojen tyypit

Pitkittäisiä onteloita käyttäviä paneeleja käytetään asuinrakennusten lattioiden rakentamiseen sekä teollisuusrakennuksiin.

Teräsbetonipaneelit eroavat seuraavista ominaisuuksista:

  • aukkojen koko;
  • ontelojen muoto;
  • ulkoiset ulottuvuudet.

Vaipan poikkileikkauksen koosta riippuen teräsbetonituotteet luokitellaan seuraavasti:

  • tuotteet, joiden sylinterimäiset kanavat ovat halkaisijaltaan 15,9 cm. Paneelit on merkitty nimityksellä 1PK, 1 PKT, 1 PKK, 4PK, PB;
  • tuotteet, joiden ympärys on 14 cm halkaisijaltaan, valmistettu raskaista betoniseoksista, merkitty 2PK, 2PKT, 2PKK;
  • onttoja paneeleita, joiden halkaisija on 12,7 cm ja jotka on merkitty nimityksellä 3PK, 3PKT ja 3PKK;
  • pyöreät ontot sydänpaneelit, joiden ontelon halkaisija on pienentynyt 11,4 cm: iin. Niitä käytetään matalarakenteisiin ja ne on merkitty 7PK: ksi.
Laattojen ja lattiarakenteiden tyypit

Paneelit liitäntäpohjojen osalta eroavat pituussuuntaisten reikien muodossa, jotka voidaan valmistaa erilaisten muotojen muodossa:

Yhteistyössä asiakkaan kanssa standardi sallii sellaisten tuotteiden tuottamisen, joiden aukkoja on erilainen kuin ilmoitetut. Kanavat voivat olla pitkänomaisia ​​tai päärynän muotoisia.

Pyöreät ontot tuotteet erottuvat myös mittojen mukaan:

  • pituus, joka on 2,4-12 m;
  • leveys alueella 1 m3.6 m;
  • 16-30 cm paksu.

Kuluttajan pyynnöstä valmistaja voi tuottaa ei-vakioituja tuotteita, jotka ovat kooltaan eroja.

Onttojen ydinpaneelien pääominaisuudet

Avaralevyt ovat suosittuja rakennusteollisuudessa niiden suorituskykyominaisuuksien vuoksi.

Laske lattialevyn lävistys

Tärkeimmät kohdat:

  • laajennettu valikoima tuotteita. Mitat voidaan valita jokaiselle kohteelle erikseen riippuen seinämien välisestä etäisyydestä;
  • kevyiden tuotteiden paino (0,8-8,6 tonnia). Massa vaihtelee betonin tiheyden ja koon mukaan;
  • sallittu kuormitus laattaan, joka on 3-12,5 kPa. Tämä on tärkein toimintavaihtoehto, joka määrittää tuotteiden kantokyvyn.
  • betoniliuoksen merkki, jota käytettiin paneelien täyttämiseen. Sopivien betonikoostumusten valmistukseen merkinnöillä M200-M400;
  • ontelojen pitkittäisakselien välinen vakiotaso on 13,9 - 23,3 cm. Etäisyys määräytyy tuotteen koon ja paksuuden mukaan;
  • tuotemerkki ja tyyppi. Tuotteen koosta riippuen teräspalkkeja käytetään jännittyneissä tai painottomissa olosuhteissa.

Tuotteiden valitseminen, sinun on otettava huomioon niiden paino, jonka tulisi vastata säätiön vahvuusominaisuuksia.

Kuinka onttoja laattoja on merkitty

Valtion standardilla säännellään tuotteiden merkitsemistä koskevia vaatimuksia. Merkintä sisältää aakkosnumeerisen merkinnän.

Onttojen ydinlaattojen merkintä

Se määrittää seuraavat tiedot:

  • paneelin koko;
  • mitat;
  • maksimikuorma alustalle.

Merkintä voi myös sisältää tietoja käytetyn betonin tyypistä.

Esimerkiksi tuote, jota merkitään lyhenteellä PC 38-10-8, pitää dekoodausta:

  • PC - tämä lyhennelmä merkitsee väliseinäpaneelia, jossa on pyöreät ontelot, jotka on tehty muottipohjamenetelmällä;
  • 38 - tuotteen pituus, komponentti 3780 mm ja pyöristetty 38 desimetriin;
  • 10 - desimaalin tarkkuudella määritetty pyöristetty leveys, todellinen koko on 990 mm;
  • 8 - numero, joka ilmaisee, kuinka paljon laatta kestää kilopaksaleja. Tämä tuote kestää 800 kg neliömetriä kohti.

Suunnittelutyötä tehtäessä on kiinnitettävä huomiota tuotteiden merkinnöissä olevaan indeksiin virheiden välttämiseksi. On tarpeen valita tuotteet kokoon, enimmäiskuormitustasoon ja muotoiluominaisuuksiin.

Edut ja heikkoudet levyillä, joilla on onteloita

Hollow-levyt ovat suosittuja monien etujen ansiosta:

  • kevyt. Yhtä suuruisina, niillä on suuri lujuus ja menestyksekkäästi kilpailevat kiinteillä paneeleilla, joilla on suuri paino, vastaavasti lisäävät vaikutusta seiniin ja rakennuksen perustuksiin.
  • alennettu hinta. Verrattuna kiinteisiin vastaaviin, onttojen tuotteiden valmistukseen tarvitaan alennettua määrää betonilaastaria, mikä auttaa vähentämään rakennuksen arvioitua kustannustasoa.
  • Kyky imeä melua ja eristää huoneen. Tämä saavutetaan johtuen pitkittäiskanavien läsnäolosta betonirakenteessa;
  • korkealaatuisia teollisuustuotteita. Suunnittelun ominaisuudet, mitat ja paino eivät salli käsityölevyjä;
  • mahdollisuus nopeuttaa asennusta. Asennus on paljon nopeampi kuin kiinteän betoniteräksen rakenne;
  • erilaisia ​​mittoja. Tämä mahdollistaa standardoitujen tuotteiden käytön monimutkaisten kattojen rakentamiseen.

Tuotteen edut sisältävät myös:

  • mahdollisuus käyttää sisäistä tilaa erilaisten teknisten verkkojen asettamiseen;
  • erikoistuneissa yrityksissä valmistettujen tuotteiden lisääntynyt turvallisuustaso;
  • vastustuskyky värähtelyvaikutuksille, lämpötila-ääriliikkeille ja korkealle kosteudelle;
  • mahdollisuus käyttää alueella, jolla on lisääntynyt seisminen toiminta enintään 9 pistettä;
  • sileä pinta, mikä vähentää viimeistelytoimintojen monimutkaisuutta.

Tuotteisiin ei kohdistu kutistumista, niissä on pieniä poikkeamia kooltaan ja kestävät korroosiota.

Hollow core -laatat

On myös haittoja:

  • tarvetta käyttää nostolaitteita työn suorittamiseen asennuksen yhteydessä. Tämä lisää kokonaiskustannuksia ja vaatii myös vapaan paikan nosturin asennusta varten.
  • tarve tehdä lujuuslaskelmia. On tärkeää laskea staattiset ja dynaamiset kuormitusarvot oikein. Massiivista betonipäällysteistä ei saa asentaa vanhojen rakennusten seiniin.

Kattoon asennusta varten on tarpeen muodostaa panssaroitu vyöhyke seinien yläpinnalle.

Kuorman laskeminen lattialaattaan

Laskennalla on helppo määrittää, kuinka paljon kuormaa lattialaatta kestää. Tätä varten tarvitset:

  • piirtää rakennuksen paikkatiedot;
  • laskea kantajalle vaikuttava paino;
  • laske kuorma jakamalla kokonaisvoima levyjen lukumäärän mukaan.

Massan määrittäminen on tarpeen tiivistää lasin, väliseinien, eristyksen sekä huonekalujen paino huoneeseen.

Tarkastele laskentamenetelmää paneeliin, jossa on merkintä PC 60.15-8, joka painaa 2,85 tonnia:

  1. Laske kantoalue - 6x15 = 9 m 2.
  2. Laske kuormitus yksikköä kohti - 2,85: 9 = 0,316 t.
  3. Me vähennämme oman painonsa 0,8-0,316 = 0,484 t vakioarvosta.
  4. Laskemme huonekalujen, -astiat, lattiat ja väliseinät painoyksikköä kohden - 0,3 tonnia.
  5. Vertailukelpoinen tulos laskettuna 0,484-0,3 = 0,184 t.
Hollow core laatta PC 60.15-8

Tuloksena oleva ero, joka vastaa 184 kg, vahvistaa turvamarginaalin olevan olemassa.

Lattialaatta - kuormitus per m 2

Laskentamenetelmällä voidaan määrittää tuotteen kuormituskyky.

Harkitse laskentalgoritmia PC-paneelin 23.15-8 esimerkin mukaan, joka painaa 1,18 tonnia:

  1. Laske alue kertomalla pituus leveydellä - 2.3x1.5 = 3.45 m 2.
  2. Määritä maksimikuormituskyky - 3,45х0,8 = 2,76t.
  3. Poistamme tuotteen massan - 2,76-1,18 = 1,58 tonnia.
  4. Laske päällysteen ja tasoitteen paino, joka on esimerkiksi 0,2 tonnia / 1 m 2.
  5. Laske lattian painon pinnalla oleva kuorma - 3,45 x0,2 = 0,69 tonnia.
  6. Määritä turvamarginaali - 1,58-0,69 = 0,89 t.

Todellinen kuorma neliömetrillä määritetään jakamalla 890 kg: n pinta-alan arvo: 3,45 m2 = 257 kg. Tämä on pienempi kuin arvioitu 800 kg / m2.

Maksimaalinen kuormitus laattaan voimien kohdalla

Staattisen kuorman raja-arvo, jota voidaan soveltaa yhdessä pisteessä, määritetään turvallisuustekijällä 1.3. Tätä varten tarvitset vakioarvon 0,8 t / m 2 kerrottuna turvatekijällä. Saatu arvo on - 0,8x1,3 = 1,04 tonnia. Kun dynaaminen kuormitus vaikuttaa yhdestä pisteestä, turvallisuustekijää on nostettava 1,5: een.

Vanhan rakennuksen paneelitalossa oleva kuori

Sen määrittäminen, kuinka paljon paino laatta kestää vanhan talon huoneistossa, tulisi ottaa huomioon useita tekijöitä:

  • seinien kantavuus;
  • rakennusten rakenteiden kunto;
  • lujituksen eheys.

Kun asetetaan raskaiden huonekalujen ja suuren tilavuuden omaavien vanhojen rakennusten rakennuksiin, on tarpeen laskea, mitkä raja-voimat kestävät rakennuksen laatat ja seinät. Käytä asiantuntijoiden palveluja. He suorittavat laskelmat ja määrittävät suurimman sallitun ja jatkuvan työn arvon. Ammattimaisesti suoritettujen laskelmien avulla voit välttää ongelmatilanteita.

Kuorman laskeminen laattolaskimella

Rakennuksen lattialle ja lattialle vaikuttavat kuormat on jaettu pysyviksi ja tilapäisiksi. Kuorman tyyppi riippuu rakenteeseen sovelletusta ajasta.

Jatkuvissa kuormissa on:

  • laatan oma paino, palkit, lattiaelementtien paino, väliseinät;

Väliaikaiset kuormat sisältävät:

  • jatkuva kuorma (hyötykuorma, riippuu rakennuksen tarkoituksesta);
  • lyhyen aikavälin kuormitus (lumikuorma, joka otetaan SNiP: n "Kuormat ja vaikutukset" ilmastokarttoihin);
  • erityinen kuorma (seismiset, räjähtävät jne.);

Kuormat ovat kahta tyyppiä: sääntely ja suunnittelu.

Regulatory loads on otettu SNiP: n "Kuormitukset ja vaikutukset", ottaen huomioon mahdolliset poikkeamat suurelta osin todellisesta arvosta.

Suunnittelukuormitukset saadaan kertomalla säätökuorma kuormituksen turvatekijällä. Tämä tekijä ottaa huomioon rakenteiden asennuksen epätarkkuudet, rakennustyömaan virheet sekä inhimillisen tekijän. Tällainen tekijä on luontaisesti turvallisuustekijöitä. Tehtaalla valmistettujen rakenteiden osalta turvallisuustekijä on 1,1, ja rakennustyömaalla esimerkiksi rakennusalustalle valmistettujen rakenteiden osalta turvallisuuskerroin on 1,3.

Kuinka kuormaa kerätään oikein palkkiin ja laattaan edelleen laskemiseksi:

Palkkeihin. Kuorman keräämiseksi oikein palkkiin - sinun täytyy kuvitella, kuinka paljon koko tasaisen hajautetun kuorman q (kg / m2) kuluu palkkiin. On loogista olettaa, että kuormitus levyltä siirretään palkkeihin, minkä jälkeen palkista siirretään kuormitus kolonneihin ja lisäksi sarakkeiden kautta kuorma siirretään säätöön. Siten kuorma jakautuu tasaisesti naapuripalkkeihin, joten palkin leveys on l2 / 2 + l2 / 2 tai yksinkertaisempi B = l2 - keskipalkkeille ja l2 / 2 äärimmäisille palkkeille, missä l2 on yhtä suuri kuin säteen etäisyys. Sen vuoksi on sallittua tehdä äärimmäisiä palkkeja pienemmästä osasta, mutta yhdistämiseen ne tekevät saman osan tai sattuu, että ääripäissä voi syntyä lisää voimia, esimerkiksi tuulen vääntö- tai pituussuuntaisista voimista. Siten palkkiin vaikuttava lineaarinen kuorma (q1), jota viitataan kirjallisuudessa "rahtinauhana", on q1 = q * B (kg / m), missä q = tasaisesti jakautunut kuorma.

Levylle. Jalkakäytöllä tuetun levyn laskemista helpommin "hajautetaan" hajautetusta kuormituksesta q (kg / m2) 1 m leveä ja kerrotaan leikattujen levyjen leveydellä eli 1 m. Niinpä laatta katsotaan monitapaiseksi jatkuvaksi palkaksi, jonka leveys on 1 m, ja joka kohdistuu lineaariseen kuormitukseen q1 (kg / m), ja palkit, joilla levyt ovat levyn saranoituihin tukiin. Esimerkiksi, jos saat hajautetun kuorman levylle q = 0,5 t / m2. Sitten lineaarinen kuormitus laatta on q1 = 0,5t / m2 * 1m = 0,5t / m.

Lattiakulun laskin, lattiapalkki

Tämän laskimen avulla voit laskea taulukkomuodossa lattian, lattian, laattojen ja palkkien tasaisen jakautuneen säätö- ja suunnittelukuormituksen.

Kerättyä päällekkäisiä kuormia ja palkkeja verkossa

Kuormituksen keräämiseksi päällekkäisyydelle tai lattiapalkkeille on tarpeen tietää materiaalien tiheys ja niiden paksuus. Lisäksi SNiP 2.01.07-85 * pitäisi olla käsillä (SP 20.13330.2011). "Kuormat ja vaikutukset". Täältä löytyvät väliaikaisten (ihmisten, huonekalujen jne.) Arvot asuin-, julkisten ja teollisuusrakennusten sekä lyhytaikaisten kuormien (tuuli, lumi, jää jne.) Sekä kuorman turvallisuustekijöiden arvot. anna sääntelytehtävä siirtyä laskettuun.

Kuormien kerääminen ei ole vaikeaa vaan melko tylsiä. Varsinkin jos tämä toimenpide suoritetaan jaksottaisesti. Siksi päätin ohjelmoida ohjelman, joka nopeuttaa ja yksinkertaistaa kuormien keräämistä lattialle ja lattiapalkkeille.

Koko toiminta tapahtuu verkossa napsauttamalla "Laske" -painiketta. Sinun tarvitsee vain valita päällekkäisyyksien muoto, sen tuen malli ja täyttää alkuperäisten tietojen kentät.

Lattiatyypit:

  • vahvistettu betoni - päällekkäisyys, jolla ei ole palkkeja. Kaikki kuorma näkee täällä ja siirretään sen jälkeen kantaviin seiniin, monoliittisiin tai ontoksiin.
  • palkkeihin - tässä tapauksessa tukirakenteita ovat metalli- tai puupalkit.

Tukijärjestelmät:

  • kaavio 1 - levyt tuetaan kahdella seinämillä.
  • Kaavio 2 - Levyt lepäävät 4 seinälle.
  • kaavio 3 - levyt on tuettu 3 seinälle. Kolmannessa seinässä on joko sisäinen laakerin seinä tai palkki.

Laskennan tulos näytetään sopivan taulukon muodossa, jossa laskettujen arvojen lisäksi asetetaan piirros, johon pääparametrit kopioidaan. Tämä taulukko voidaan tulostaa tai tallentaa välittömästi napsauttamalla "Tulosta" -painiketta.

Mikä kuorma voi kestää onttoja lattialaatoja

Useita vuosia betonityyppisiä betonielementtejä on käytetty rakennustelineiden rakennustekniikassa: betoniteräkset, seinälohkot (hiilihapotettu, vaahtobetoni, kaasusilikaatti) sekä monoliitti- tai tiilarakenteiden rakentaminen. Onttoa laatua oleva kuorma on yksi tällaisten tuotteiden pääpiirteistä, joita on tarkasteltava tulevan rakenteen suunnittelussa. Tämän parametrin virheellinen laskeminen vaikuttaa haitallisesti koko rakenteen lujuuteen ja kestävyyteen.

Onton ydinlaattojen tyypit

Hollow-hylsylevyjä käytetään laajalti lattianrakentamisessa asuinrakennusten, julkisten ja teollisten rakennusten rakentamisessa. Tällaisten levyjen paksuus on 160, 220, 260 tai 300 mm. Reikien (tyhjät) tyypit ovat:

  • pyöreillä rei'illä;
  • ovaalinmuotoiset aukot;
  • päärynän muotoisilla rei'illä;
  • aukkojen muoto ja koko, joita säännellään teknisin edellytyksin ja erityisvaatimuksin.

Nykyaikaisilla rakennusmarkkinoilla suosituimpia ovat 220 mm: n paksuiset ja sylinterimäiset reiät, koska ne on suunniteltu merkittäviin kuormituksiin kullekin ontolevylle ja GOST tarjoaa niiden käytön melkein kaikentyyppisten rakennusten lattioiden rakentamiseen. Tällaisia ​​rakenteellisia tuotteita on kolme tyyppiä:

  • Levyt, joiden sylinterimäiset aukot Ø = 159 mm (merkitty symbolilla 1PK).
  • Pyöreät reiät Ø = 140 mm (2 kpl), jotka on valmistettu vain raskaista betonityypeistä.
  • Paneelit, joissa on tyhjät Ø = 127 mm (3PC).

Vihje! Pienikokoisille yksittäisrakenteille on sallittua käyttää 16 cm: n levyisiä levyjä, joiden reiät ovat Ø = 114 mm. Tärkeä näkökohta, kun harkitaan tämäntyyppisen tuotteen valintaa jo rakennuksen suunnittelussa, on suurin sallittu kuormitus, jota levy kestää.

Onttojen ydinlaattojen ominaisuudet

Onton ydinlaattojen tärkeimmät tekniset ominaisuudet ovat:

  • Geometriset mitat (vakio: pituus - 2,4 - 12 m, leveys - 1,0 - 3,6 m, paksuus - 160 - 300 mm). Asiakkaan pyynnöstä valmistaja voi valmistaa epätyypillisiä paneeleita (mutta vain tiukasti noudattamalla GOSTin kaikkia vaatimuksia).
  • Paino (800 - 8600 kg riippuen paneelin koosta ja betonin tiheydestä).
  • Sallittu kuormitus laattaan (3 - 12,5 kPa).
  • Valmistuksessa käytetyn betonityyppi (raskas, kevyt, tiheä silikaatti).
  • Reikien keskipisteiden välinen normalisoitu etäisyys on 139 - 233 mm (riippuen tuotteen tyypistä ja paksuudesta).
  • Sellaisten sivujen vähimmäismäärä, joiden päällä laatta pitäisi olla (2, 3 tai 4).
  • Pohjakuvien sijainti laatta (pituus tai leveys). Paneeleille, jotka on suunniteltu tukemaan 2 tai 3 sivua, tyhjien aukkojen on oltava varustettu vain tuotteen pituudella. 4-puolelle tuettuihin levyihin on mahdollista järjestää reiät rinnakkain sekä pituuden että leveyden kanssa.
  • Valmistuksessa käytettävät liittimet (jännitteettömät tai jännitteettömät).
  • Venttiilien tekniset päästöt (mikäli ne on suunniteltu suunnittelutoimeksiannon mukaan).

Onttojen levyjen merkintä

Paneelimerkki koostuu useista kirjainten ja numeroiden ryhmistä, jotka on erotettu yhdysmerkillä. Ensimmäinen osa on levyn tyyppi, sen geometriset mittasuhteet desimaalimetreinä (pyöristetty lähimpään kokonaislukuun), tuen tuen sivut, joiden osalta paneeli on suunniteltu. Toinen osa on laskettu kuormitus lautasella kPa: ssa (1 kPa = 100 kg / m²).

Varoitus! Etiketti ilmaisee lasketun ja tasaisesti jakautuneen kuorman betonilattialle (ilman tuotteen omaa painoa).

Lisäksi merkinnät ilmaisevat valmistukseen käytettävän betonin tyypin (L - valo, C - tiheä silikaatti, raskasbetonia ei indeksoi) ja lisäksi ominaisuuksia (esimerkiksi seismologinen stabiilius).

Jos esimerkiksi 1PK66.15-8-merkintä levitetään laattaan, se tulkitaan seuraavasti:

1PK - paneelin paksuus - 220 mm, tyhjä Ø = 159 mm ja se on tarkoitettu asennettavaksi molemmilla puolilla.

66.15 - pituus on 6600 mm, leveys - 1500 mm.

8 - kuormitus laattaan, joka on 8 kPa (800 kg / m²).

Merkintöjen indeksin puuttuminen merkinnän lopussa osoittaa, että valmistukseen käytettiin raskasta betonia.

Toinen esimerkki merkinnästä: 2PKT90.12-6-C7. Joten, jotta:

2PKT - paneeli, jonka paksuus 220 mm, tyhjiö Ø = 140 mm, suunniteltu asennettavaksi painottaen kolmelta puolelta (PAC tarkoittaa tarvetta asentaa paneeli tukeen neljällä sivulla).

90,12 - pituus - 9 m, leveys - 1,2 m.

6 - kuormitus 6 kPa (600 kg / m²).

Se tarkoittaa, että se on valmistettu silikaatti (tiheä) betonia.

7 - paneelia voidaan käyttää alueilla, joilla on seismologista aktiivisuutta enintään 7 pistettä.

Onttojen ydinlaattojen edut ja haitat

Verrattuna kiinteisiin analogisiin ontopaneeleihin on useita epäilyttäviä etuja:

  • Vähemmän painoa verrattuna kiinteisiin kolmiin ja ilman luotettavuuden ja kestävyyden menetys. Tämä vähentää merkittävästi pohja- ja kantavien seinien kuormitusta. Asennuksessa on mahdollista käyttää vähemmän kuormitettavia laitteita.
  • Alhaisemmat kustannukset, kuten niiden valmistuksessa, edellyttävät huomattavasti pienempää rakennusaineistoa.
  • Korkeampi lämmön- ja äänieristys (johtuen tuotteessa olevasta "runko-osasta").
  • Reikiä voidaan käyttää erilaisten teknisten viestien asettamiseen.
  • Levyjen tuotanto tapahtuu vain suurissa laitoksissa, joissa on modernit huipputekniset laitteet (niiden tuotanto käsiteollisissa olosuhteissa on lähes mahdotonta). Siksi voit olla varma siitä, että tuote vastaa ilmoitettuja vaatimuksia (GOST: n mukaan).
  • Vakiokokojen valikoima mahdollistaa erilaisten kokoonpanojen rakentamisen (lattioiden lisäosat voidaan valmistaa standardipaneeleista tai valmistaa valmistajalta).
  • Kattoon asennettava nopea asennus monoliittirakenteisen betonirakenteen järjestelyyn verrattuna.

Tällaisten levyjen haitat ovat:

  • Mahdollisuus asentaa vain nostolaitteiden avulla, mikä johtaa rakentamisen korkeampiin hintoihin asuntorakennuksen yksittäisen rakentamisen aikana. Tarve vapaaseen tilaan yksityisellä alueella nosturin ohjaamiseksi asennettaessa lattiaa.

Vihje! Puulattiat, jotka ovat erittäin suosittuja yksittäisissä rakenteissa, asennetaan palkkeihin, joiden asennukseen on myös tarpeen käyttää riittävän kantokykyisiä laitteita.

  • Kun käytetään seinälohkoja, on tarpeen järjestää teräsbetonivahvikkeet.
  • Mahdollisuus tehdä omia käsiään.

Likimääräinen laskelma kuormituksesta ontolle

Jotta pystyt laskemaan itsenäisesti maksimaalisen kuormituksen, jota lattialevyt, joita aiot käyttää rakentamisen aikana, kestävät, on otettava huomioon kaikki kohdat. Oletetaan, että haluat käyttää 1PK.12.12-8-paneeleita päällekkäisyyksien järjestämiseen (toisin sanoen laskettu kuormitus, jonka yksi tuote voi kestää, on 800 kg / m²: lisälaskelmista osoitamme sen kirjaimella Qo). Laskettaessa kaikkien asennettujen, staattisten ja hajautettujen kuormien summa (itse levyn painosta, ihmisistä ja eläimistä, huonekaluista ja kodinkoneista, lattiapäällysteestä, eristyksestä, viimeistelystä lattianpäällysteestä ja väliseinistä), jonka QΣ merkitsee, voit selvittää, mikä betonilevysi voi kestää.. Tärkeä näkökohta, johon on kiinnitettävä huomiota: kaikkien laskelmien tuloksena (tietenkin, ottaen huomioon lisääntyvä lujuuskerroin), pitäisi käydä ilmi, että QΣ ≤ Q.

Levyn oman painon tasaisen jakautumisen määrittämiseksi on tarpeen tietää massansa (M). Voit käyttää joko valmistajan varmenteessa ilmoitettua massaarvoa (jos myyntipaikassa on annettu) tai GOST-taulukon viitearvo, joka on koottu raskaiden betonityyppien tuotteista, joiden keskimääräinen tiheys on 2500 kg / m³. Meidän tapauksessamme levyn vertailupaino on 2400 kg.

Ensin lasketaan levytila: S = L⨯H = 6.3⨯1.2 = 7.56 m². Tällöin kuormitus omasta painostaan ​​(Q1) on: Q1 = M: S = 2400: 7,56 = 317,46 ≈ 318 kg / m².

Joissakin rakennuskohteissa on suositeltavaa käyttää hyötykuorman kokonaisarvoa asuintilojen lattiassa laskennassa - Q2 = 400 kg / m².

Tällöin lattialevyyn kestettävä kokonaiskuorma on:

QΣ = Q1 + Q2 = 318 + 400 = 718 kg / m² ˂ 800 kg / m², eli pääosa QΣ ≤ Qo havaitaan ja valittu levy sopii asuintilojen kerroksen järjestämiseen.

Tarkat laskutoimitukset edellyttävät erityisiä tiheysarvoja (tasoitteet, lämmöneristimet, päällystyspinnoitteet), kuormitusarvo väliseiniltä, ​​kalusteiden ja kodinkoneiden paino ja niin edelleen. Kuormien (Qn) ja turvatekijöiden (Үn) mittarit on määritelty asiaankuuluvassa SNIP-ah: ssa.

Lopuksi

Rakenteilla on 300 - 1250 kg / m² suunniteltuja kuormalavoja nykyaikaisilla rakennusmarkkinoilla. Jos saavutat tarvittavan maksimikuorman laskennan, voit valita tarpeitasi vastaavan tuotteen ilman liian suurta vahvuutta.

Lattialevyn itsenäinen laskeminen: harkitsemme kuormitusta ja haemme tulevan laatikon parametrit

Monoliittinen levy on aina hyvä, koska se on tehty ilman nostureita - kaikki työ tehdään paikan päällä. Mutta kaikki ilmeiset edut nykyään monet ihmiset kieltäytyvät tällaisesta vaihtoehdosta, koska ilman erityisiä taitoja ja online-ohjelmia on melko vaikeaa määrittää tarkasti tärkeitä parametreja, kuten vahvistusosaa ja kuormitusta.

Siksi tässä artikkelissa autetaan sinua tutkimaan lattialevyn ja sen vivahteiden laskenta sekä tutustumalla perustietoihin ja asiakirjoihin. Modernit online-laskimet ovat hyvä asia, mutta jos puhumme sellaisesta ratkaisevasta hetkestä kuin asuinkerrostumisen päällekkäisyydestä, suosittelemme, että olet turvallinen ja luottakaa henkilökohtaisesti kaikesta!

pitoisuus

Vaihe 1. Teemme päällekkäisyyden järjestelmän

Aloitetaan siitä, että monoliittinen teräsbetonilattia on rakenne, joka sijaitsee neljällä kantavalla seinämillä, ts. sen muodon perusteella.

Ja ei aina lattialaatta säännöllinen nelikulmio. Lisäksi nykyään asuinrakennusten hankkeet eroavat monimutkaisten muotojen kärsivällisyydestä ja erilaisuudesta.

Tässä artikkelissa opimme laskemaan yhden metrin laatta ja sinun on laskettava kokonaiskuormitus alueiden matemaattisten kaavojen avulla. Jos se on hyvin vaikeaa - hajota levyn alue erillisiin geometrisiin muotoihin, laske kunkin kuormat ja sitten vain yhteenveto.

Vaihe 2. Suunnittelulevyn geometria

Katsokaa nyt sellaisia ​​peruskäsitteitä kuin levyn fysikaalinen ja suunnittelupituus. eli päällekkäisyyden fyysinen pituus voi olla mikä tahansa, mutta palkin arvioidulla pituudella on jo eri merkitys. Hän kutsui vähimmäisetäisyydet syrjäisten seinien välille. Itse asiassa laatan fyysinen pituus on aina pidempi kuin suunnittelun pituus.

Tässä on hyvä videoesittely, kuinka laskea monoliittinen lattialaatta:

Tärkeä asia: Levyn tukielementti voi olla joko saranoitu keulapalkki tai jäykkä kiristysnauha telineissä. Annamme esimerkin lautasen laskemisesta konsolivapaan palkkiin, koska tämä on yleisempi.

Laskettaessa koko laatta sinun on laskettava yksi metri käynnistymään. Ammattimaiset rakentajat käyttävät tätä varten erityistä kaavaa ja antavat esimerkin tällaisesta laskelmasta. Tällöin levyn korkeus merkitään aina h: ksi, ja leveys on b. Lasketaan taso näiden parametrien avulla: h = 10 cm, b = 100 cm. Tätä varten sinun on perehdyttävä näihin kaavoihin:

Seuraava - ehdotetuista vaiheista.

Vaihe 3. Laske kuorma

Laatta on helpointa laskea, jos se on neliö ja jos tiedät millaista kuormitusta suunnitellaan. Samaan aikaan osa kuormasta pidetään pitkäaikaisena, mikä määräytyy huonekalujen, laitteiden ja kerrosten lukumäärän mukaan, ja toinen - lyhytaikainen, rakentamisen aikana.

Lisäksi lattialevyn on kestettävä muuntyyppiset kuormat, sekä tilastolliset että dynaamiset, joiden keskimääräinen kuormitus mitataan aina kilogrammoina tai uutuuksina (esimerkiksi raskaiden huonekalujen asentaminen) ja jakokulutus kilogrammoina ja voima. Erityisesti laatta lasketaan aina jakelukuormituksen määrittämiseksi.

Tässä on arvokkaita suosituksia lattialaatan kuormittami- sesta taivutuksena:

Toinen tärkeä seikka, joka on myös otettava huomioon: millä seinillä monoliittinen lattialaatta lepää? Tiili-, kivi-, betoni-, vaahtobetoni-, hiilihapotettu tai hiutaleet? Siksi on niin tärkeää laskea laatta paitsi sen kuorman sijainnista myös oman painon näkökulmasta. Erityisesti, jos se asennetaan riittämättömästi voimakkaisiin materiaaleihin, kuten hiekkalaatikkoon, hiilihapotettuun betoniin, vaahtobetoniin tai laajennettuun savibetoniin.

Lattialevyn varsinainen laskelma, jos puhumme asuinrakennuksesta, pyrkii aina etsimään jakeluvaraa. Se lasketaan kaavalla: q1 = 400 kg / m². Mutta tähän arvoon lisätään itse laatan paino, joka on tavallisesti 250 kg / m², ja betonipinta, aluslevy ja viimeistely lattia antavat vielä 100 kg / m². Yhteensä meillä on 750 kg / m².

Muista kuitenkin, että laatan taivutusjär- jestelmä, joka sen muodostaman seinämän alapuolella, on aina keskellä. Jännite lasketaan 4 metrin pituudelta seuraavasti:

l = 4 mMmax = (900h4²) / 8 = 1800 kg / m

Yhteensä: 1800 kg / m, vain tällainen kuorma tulee olla lattialevyssä.

Vaihe 4. Valitaan konkreettinen luokka

Se on monoliittinen laatta, toisin kuin puiset tai metallipalkit, jotka lasketaan poikkileikkauksella. Loppujen lopuksi itse betoni on heterogeeninen materiaali, ja sen vetolujuus, virtaavuus ja muut mekaaniset ominaisuudet ovat merkittäviä vaihteluita.

Mikä on yllättävää, vaikka näytteitä betonista, jopa yhdestä erästä, saadaan eri tuloksia. Loppujen lopuksi paljon riippuu sellaisista tekijöistä kuin seoksen saastuminen ja tiheys, menetelmät muiden teknisten tekijöiden tiivistämiseksi, jopa ns. Sementtitoiminta.

Monoliittisen laatan laskennassa otetaan aina huomioon betonin luokka ja lujuusluokka. Varsinainen betonin vastus on aina otettu arvoon, joka vahvistuksen vastus menee. Itse asiassa, armatuuri toimii laajennuksena. Varmista välittömästi, että on olemassa useita suunnittelujärjestelmiä, joissa otetaan huomioon eri tekijät. Esimerkiksi voimat, jotka määrittävät poikkileikkauksen perusparametrit kaavojen avulla tai laskelman suhteessa jakson painopisteeseen.

Vaihe 5. Valitaan vahvistusosa

Laattojen tuhoutuminen tapahtuu, kun lujuus saavuttaa vetolujuuden tai myötörajan. eli lähes kaikki riippuu hänestä. Toinen kohta, jos betonin lujuus vähenee kahdella kerralla, laatan vahvistamisen kantokyky pienenee 90 prosentista 82 prosenttiin. Siksi luotamme kaavoihin:

Vahvistus tapahtuu vanteiden vahvistamisesta hitsatusta verkosta. Päätehtävänä on laskea poikittaisprofiilin lujittamisprosentti pituussuuntaisilla vahvistuspalkkeilla.

Kuten luultavasti huomasi useammin kuin kerran, sen yleisimmät leikkaustyypit ovat geometrisia muotoja: ympyrän muoto, suorakulmio ja trapetsi. Ja itse poikkileikkausalueen laskenta tapahtuu kahdella vastakkaisella kulmalla, ts. vinottain. Muista myös, että laatan tietty vahvuus antaa lisävahvistusta:

Jos lasketaan raudoitus ääriviivoilla, sinun on valittava tietty alue ja laskea se peräkkäin. Lisäksi itse objektissa on helpompi laskea poikkileikkaus, jos otamme rajatun suljetun kohteen, kuten suorakulmion, ympyrän tai ellipsin, ja lasketaan kahdessa vaiheessa: ulkoisen ja sisäisen muodon muodostamisen avulla.

Jos esimerkiksi lasketaan suorakulmaisen monoliittisen laatan vahvistaminen suorakulmion muotoisena, sinun on merkittävä ensimmäinen piste jonkin kulman yläosassa, merkitse toinen ja laske koko alue.

SNiPam 2.03.01-84 "betoni- ja teräsrakenteiden" mukaan lujuus A400 vetolujuus on R = 3600 kgf / cm2 tai 355 MPa, mutta betoniluokalle B20, Rb = 117 kg / cm² tai 11,5 MPa:

Laskelmamme mukaan 1-mittarin vahvistukseen tarvitaan 5 sauvaa, joiden poikkileikkaus on 14 mm ja solu 200 mm. Sitten raudoituksen poikkipinta-ala on 7,69 cm2. Taipumisen luotettavuuden varmistamiseksi levyn korkeus on yli 130-140 mm, sitten vahvistusosa on 4-5 tankoa 16 mm.

Joten, tietäen sellaiset parametrit kuin tarvittava betoni-, tyyppi- ja louhintuotemerkki, joita tarvitaan lattialevyyn, voit olla varma luotettavuudesta ja laadusta!

Kuormien kerääminen lattialaattaan

Vahvistettu betoni monoliittinen lattialaatta laskeminen

Vahvistetut betoni- monoliittiset laatat, huolimatta siitä, että valmiit laatat ovat riittävän suuret, ovat edelleen vaatimuksia. Varsinkin jos se on oma yksityisasunto, jossa on ainutlaatuinen asettelu, jossa kaikissa huoneissa on erikokoisia tai rakentamisprosessi toteutetaan ilman nostureita.

Monoliittiset laatat ovat melko suosittuja, erityisesti yksittäisten rakennusten maalaistalojen rakentamisessa.

Tällaisessa tapauksessa monoliitti- sestä betoniteräksestä valmistetun levyn avulla voidaan vähentää merkittävästi kaikkien tarvittavien materiaalien hankkimiseen tarvittavia varoja, niiden toimitusta tai asennusta. Tällöin kuitenkin enemmän aikaa voidaan käyttää valmistelutöihin, joista osa on muottiyksikkö. On syytä tietää, että ihmiset, jotka alkavat laatoituksen betonoitua, eivät ole lainkaan estyneet.

Tilaus, betoni ja muotti on nyt helppoa. Ongelma on se, että jokainen henkilö ei voi määrittää, millaista raudoitusta ja betonia tarvitaan tällaisen työn suorittamiseen.

Tämä aineisto ei ole toiminnan opas, vaan se on luonteeltaan puhtaasti informatiivinen ja sisältää vain esimerkin laskelmista. Kaikki raudoitetun betonin rakenteiden laskutoimitukset on normalisoitu SNiP 52-01-2003 "Vahvistettu betoni- ja betonirakenteet. Tärkeimmät säännökset ", samoin kuin säännöt SP 52-1001-2003" Vahvistettu betoni ja betonirakenteet ilman vahvistusta etukäteen ".

Monoliittinen laatta on koko alueelle vahvistettua muottirakennetta, joka kaadetaan betonilla.

Kaikkien kysymysten osalta, joita saattaa syntyä raudoitettujen betonirakenteiden laskemisessa, on tarpeen viitata näihin asiakirjoihin. Tämä materiaali sisältää esimerkin monoliittisten teräsbetonilaattojen laskemisesta näiden sääntöjen ja määräysten suositusten mukaisesti.

Esimerkki raudoitettujen betonilaattojen ja kaikkien rakennusten rakenteen laskemisesta koostuu useista vaiheista. Niiden ydin on tavallisten (poikkileikkaus), lujuusluokan ja betoniluokan geometristen parametrien valinta, joten suunniteltu laatta ei romahda mahdollisimman suuren kuormituksen vaikutuksesta.

Esimerkki laskennasta tehdään osalle, joka on kohtisuorassa x-akseliin nähden. Paikallista puristusta, poikittaisvoimia, työntövoimaa, vääntöä (ryhmän 1 raja-arvoja), halkeaman avaamista ja muodonmuutoslaskelmia (ryhmän 2 raja-arvoja) ei tehdä. Etukäteen on välttämätöntä olettaa, että tavalliselle litteälle lattialle asuinkerrostalossa tällaisia ​​laskelmia ei tarvita. Yleensä, miten se todella on.

Sen pitäisi olla rajoitettu vain taivutusmomentin normaalin (poikkileikkaus) osan laskemiseen. Ne ihmiset, jotka eivät tarvitse selityksiä geometristen parametrien määrittelystä, suunnittelumallien valinnasta, kuormien keräämisestä ja suunnitteluarvioista, voivat siirtyä välittömästi osiin, jossa on esimerkki laskelmista.

Ensimmäinen vaihe: levyn arvioidun pituuden määrittely

Laatta voi olla mitä tahansa pituutta, mutta palkin pituus on jo tarpeen laskea erikseen.

Todellinen pituus voi olla mitä tahansa, mutta arvioitu pituus, toisin sanoen palkin pituus (tässä tapauksessa lattialevy) on toinen asia. Span on valaisimen kantavien seinämien välinen etäisyys. Tämä on huoneen pituus ja leveys seinästä seinään, joten määritettäessä teräsbetoni-monoliittisten kerrosten span on melko yksinkertainen. Se on mitattava nauhamittauksella tai muilla käytettävissä olevilla työkaluilla tällä etäisyydellä. Todellinen pituus kaikissa tapauksissa on suurempi.

Monoliittista teräsbetonilaattaa voidaan tukea tukiseinillä, jotka on tehty tiilestä, kivestä, hiekkakivestä, sardeldiittibetonista, vaahdosta tai hiilihapotetusta betonista. Tällöin ei kuitenkaan ole kovin tärkeää, jos tukiseinät on sovitettu materiaaleista, joilla ei ole riittävää lujuutta (hiilihapotettu betoni, vaahtobetoni, sementtilohko, laajennettu savibetoni), on myös tarpeen kerätä lisää kuormia.

Tässä esimerkissä on laskelma yhden kerroksen lattialaattaan, jota tuetaan kahdella tukiseinällä. Tässä materiaalissa ei oteta huomioon laskelmaa teräsbetonista, joka on tuettu pitkin ääriviivaa, ts. 4 seinämissä tai monisäikeisiin laatoihin.

Jotta edellä mainittu olisi parempi assimiloitu, on arvioitava leveydeltään l = 4 m.

Lujitetun betonin monoliittisen päällekkäisyyden geometristen parametrien määrittäminen

Kuormien laskeminen lattialevyllä tarkastellaan erikseen kullekin rakennustyölle.

Nämä parametrit eivät ole vielä tiedossa, mutta on järkevää asettaa ne, jotta pystyt tekemään laskelman.

Laattojen korkeus on h = 10 cm, ehdollinen leveys on b = 100 cm. Tällaisessa tilanteessa edellytys on, että betonilaattaa pidetään säteenä, joka on 10 cm korkea ja 100 cm leveä., voidaan soveltaa kaikkiin jäljellä oleviin levyjen leveyksiin. Toisin sanoen, jos on suunniteltu laatta, jonka arvioitu pituus on 4 m ja leveys 6 m, kunkin 6 m: n tiedon osalta on välttämätöntä soveltaa laskettuihin 1 m: n parametreja.

Betoniluokka on B20 ja lujitusluokka A400.

Seuraavaksi tulee tuettujen määrien määritelmä. Lattialevyllä voidaan katsoa saranoitua tukipalkkia riippuen seinämien lattialaattojen tuen leveydestä, materiaalista ja tukiseinien painosta. Tämä on yleisin tapaus.

Seuraavaksi kerrotaan kuormitusta levylle. Ne voivat olla hyvin erilaisia. Rakenteellisen mekaniikan näkökulmasta katsottuna kaikki, jotka pysyvät liikkumattomina palkkiin, liimataan, naulataan tai ripustetaan lattialevyyn - tämä on tilastollinen ja melko usein vakiokuormitus. Kaikki, jotka vaipuvat, kulkevat, kulkevat, kulkevat ja putoavat palkkiin - dynaamisia kuormia. Tällaiset kuormat ovat useimmiten väliaikaisia. Tässä esimerkissä ei kuitenkaan tehdä eroa pysyvien ja tilapäisten kuormien välillä.

Olemassa olevat kerättävät kuormat

Kuorman kerääminen keskittyy siihen, että kuorma voidaan jakaa tasaisesti, keskittää, jakautua epätasaisesti ja toiseksi. Kuitenkaan ei ole mitään syytä mennä niin syvälle kaikkiin kerättyjen kuormien yhdistelmän olemassa oleviin muunnelmiin. Tässä esimerkissä on tasaisesti jaettu kuormitus, koska tällainen lastauslaattojen tapaus asuinrakennuksissa on yleisin.

Keskittynyt kuormitus mitataan kg-voimilla (CGS) tai Newtonissa. Hajautettu kuorma on kgf / m.

Lattialaatan kuormitus voi olla hyvin erilainen, keskittynyt, tasaisesti jakautunut, epätasaisesti jakautunut jne.

Useimmiten kerrostalot yksityisissä kodeissa lasketaan tietylle kuormalle: q1 = 400 kg per 1 neliömetriä. Levyn korkeuden ollessa 10 cm, levyn paino lisää tähän kuormaan noin 250 kg / neliömetri. Keraamiset laatat ja tasoitteet - jopa 100 kg / 1 m²

Tällaisella hajautetulla kuormalla otetaan huomioon lähes kaikki lattian kuormien yhdistelmät asuinrakennuksessa, joka on mahdollista. On kuitenkin syytä tietää, että kukaan ei kiellä mallia luotettavasta suuresta kuormituksesta. Tässä materiaalissa tämä arvo otetaan ja vain siinä tapauksessa se on kerrottava luotettavuuskertoimella y = 1.2.

q = (400 + 250 + 100) * 1,2 = 900 kg per 1 neliömetriä.

Leveydeltään 100 cm: n levyisen aineen parametrit lasketaan, joten tätä hajautettua kuormitusta pidetään litteänä, joka toimii lattialevyn y-akselilla. Mitattu kg / m.

Määritä maksimi taivutusmomentti normaali (poikkileikkaus) palkki

Kahden saranoidun kannattimen (tässä tapauksessa seinien tukemana oleva lattialaatta, johon kohdistuu tasalaatuiset kuormat) maksimaalinen taivutusmomentti on palkin keskellä. Mmax = (q * l ^ 2/8 (149: 5.1)

Span l = 4 m, Mmax = (900 * 4 ^ 2) / 8 = 1800 kg / m.

On tarpeen tietää, että raudoitetun betoniteräksen laskeminen SP 52-101-2003: n ja SNiP 52-01-2003: n mukaisten toimien rajoittamiseksi perustuu seuraaviin suunnitteluoletuksiin:

Onton vahvistetun levyn rakenne

  1. Betonin vetolujuus on 0. Tällainen oletus perustuu siihen, että betonin vetolujuus on paljon pienempi kuin lujituksen vetolujuus (noin 100 kertaa), joten betonin rikkoutumisesta johtuen rakenteen venytetty alue voi muodostaa halkeamia. Näin ollen vain vahvistus toimii jännitteenä normaalissa osassa.
  2. Betonin kestävyys puristukseen tulisi jakaa tasaisesti puristusvyöhykkeelle. Sitä ei hyväksytä enempää kuin laskettu vastus Rb.
  3. Vetolujuusrajoittumisjännitykset eivät saa ylittää laskettua resistanssia Rs.

Jotta estettäisiin muovisen saranan muodostaminen ja rakenteen kaatuminen, mikä tässä tapauksessa on mahdollista, betonin y puristetun alueen korkeuden suhde E raudan painopisteen etäisyydelle palkin h0 päästä E = y / h0 ei saa ylittää raja-arvoa ER. Raja-arvo olisi määritettävä seuraavalla kaavalla:

ER = 0,8 / (1 + Rs / 700).

Tämä on empiirinen kaava, joka perustuu kokemukseen rakenteiden suunnittelusta teräsbetonista. Rs on vahvistuksen laskettu vastus MPa: ssa. On kuitenkin syytä tietää, että tässä vaiheessa pystyt helposti hallitsemaan betonin pakatun alueen suhteellisen korkeuden raja-arvojen taulukkoa.

Jotkut vivahteet

Taulukossa oleviin arvoihin on merkintä, jonka esimerkki sisältyy materiaaliin. Jos laskentamallien kerääminen ei ole ammattimainen muotoilija, on suositeltavaa laskea pakatun ER-alueen arvot noin 1,5 kertaa.

Lisälaskenta tehdään ottaen huomioon a = 2 cm, missä a on etäisyys palkin pohjasta lujituksen poikkipinta-alan keskelle.

Kun E on pienempi tai yhtä suuri kuin ER ja puristusvyöhykkeellä ei ole vahvistusta, betonin lujuus on tarkastettava seuraavan kaavan mukaisesti:

B M = 180 000 kg / cm, kaavan mukaan. 36

3600 * 7,69 (8 - 0,5 * 2,366) = 188721 kg / cm> M = 180 000 kg / cm, kaavan mukaan.

Lattian asettaminen monoliittisen vahvistetun lattialevyn päälle

Kaikki tarvittavat vaatimukset täyttyvät.

Jos betonin luokka kasvaa B25: een, vahvistus tarvitsee pienemmän määrän, koska B25 Rb = 148 kgf / cm sq. (14,5 MPa).

am = 1800 / (1 * 0,08 ^ 2 * 1480000) = 0,19003.

As = 148 * 100 * 10 (1 on juuren neliö (1 - 2 * 0.19)) / 3600 = 6,99 neliömetriä.

Näin ollen olemassa olevan lattialaatan 1 pm: n vahvistamiseksi sinun on vielä käytettävä 5 sauvaa, joiden halkaisija on 14 mm 200 mm: n välein tai jatka valitsemaan osaa.

On todettava, että laskelmat ovat varsin yksinkertaisia, eivätkä ne vie paljon aikaa. Tämä kaava ei kuitenkaan ole selvempi. Ehdottomasti mikä tahansa betonirakenne voidaan periaatteessa laskea klassisen, eli äärimmäisen yksinkertaisen ja visuaalisen kaavan perusteella.

Kuormien kerääminen - joitain lisä laskelmia

Kuormien kerääminen ja monoliittisten lattialevyjen vahvuuden laskeminen usein kaventuu vertaamalla kahta tekijää toisiinsa:

  • jotka vaikuttavat laattoihin;
  • vahvuus vahvistaa sen osia.

Ensimmäisen täytyy välttämättä olla pienempi kuin toinen.

Määritelmä momenttihaasteiden kuormitetuissa osissa. Momentti, koska taivutusmomentit määräävät 95% taivutuslevyjen vahvistamisesta. Kuormitetut osat - keskiosan keskiosa tai toisin sanoen levyn keskiosa.

Taivutusmomentit neliömäisessä levyssä, jota ei ole puristettu ääriviivaa pitkin (esimerkiksi tiiliseinien päälle), voidaan määrittää kullekin suunnalle X ja Y: Mx = My = ql ^ 2/23.

Tietyissä tapauksissa voit saada tiettyjä arvoja:

  1. Levy mitattuna 6x6 m - Mx = My = 1,9 tm.
  2. Levy mitattuna 5x5 m - Mx = Oma = 1,3 m.
  3. Levy 4x4 m - Mx = Oma = 0,8 tm.

Lujuuden tarkistamisen yhteydessä katsotaan, että osassa on puristettua betonia päältä sekä vetolujuus alareunassa. He pystyvät muodostamaan tehoparin, joka tuntee sen hetken, kun se tulee siihen.

Raudoituksen laskeminen monoliittiselle laattolaskimelle

Laskimen käyttötarkoitus

Monoliittisen laattasäiliön (laatta) online-laskin on tarkoitettu laskemaan mittasuhteet, muottirakenteet, raudoituksen määrä ja halkaisija sekä betonin määrä talojen ja muiden rakennusten tällaisten perustusten järjestämiseksi. Ennen kuin valitset säätiön tyypin, muista kysyä asiantuntijoilta, onko tietotyyppi sopiva oloasi.

Kaikki laskelmat suoritetaan SNiP 52-01-2003 "betoni- ja betoniteräsrakenteiden", SNiP 3.03.01-87 ja GOST R 52086-2003 mukaisesti

Kellarialusta (ushp) on monoliittinen, betonirakenteinen pohja, joka on rakennettu koko rakennuksen alueelle. Se on alhaisin paine maassa muun tyyppisiä. Sitä käytetään pääasiassa kevyisiin rakennuksiin, koska kuormituksen lisääntyessä tämäntyyppisen säätiön kustannukset kasvavat merkittävästi. Pienellä syvyydellä, melko tasaisilla mailla, on mahdollista nostaa ja laskea levy tasaisesti vuoden ajasta riippuen.

Varmista, että kaikilla sivuilla on hyvä vesitiivis. Lämmittäminen voi olla joko perustana tai lattiapinnoitteena, ja useimmiten puristettua polystyreenivaahtoa käytetään näihin tarkoituksiin.

Laattojen perustusten tärkein etu on suhteellisen alhainen kustannus ja rakentamisen helppous, koska toisin kuin liuskan perustukset, ei ole tarvetta suurta määrää maanrakennustöitä. Yleensä riittää kaivaa oja 30-50 cm syvyyteen, jonka pohjalla on hiekkalaatikko sekä tarvittaessa geotekstiilit, vedenpitävä rakenne ja eristyskerros.

On välttämätöntä selvittää, mitä ominaisuuksia maaperällä on tulevaisuuden perustaksi, sillä tämä on tärkein ratkaiseva tekijä lajin, koon ja muiden tärkeiden ominaisuuksien valinnassa.

Kun täytät tiedot, kiinnitä huomiota lisätietoihin Lisätiedot-merkillä.

Seuraavassa on esitetty suoritettujen laskelmien luettelo, jossa on lyhyt kuvaus kustakin tuotteesta. Voit myös kysyä kysymyksesi lomakkeen avulla oikealla lohkolla.

Yleiset tiedot laskelmien tuloksista

  • Levyn ympärysmitta - Pohjan kaikki sivut
  • Tasalevyn pohja - Tasainen levyn ja maaperän välisen vaaditun eristyksen ja vedenpitävyyden alue.
  • Sivupinta-ala - yhtä suuri eristysalue kaikilla sivuilla.
  • Betonin tilavuus - betonin määrä, joka vaaditaan koko säätiön täyttämiseksi tietyillä parametreilla. Koska tilattavan betonin tilavuus voi poiketa hieman varsinaisesta sekä kaatumisen aikana tapahtuvan tiivistyksen vuoksi, on tarpeen tilata 10% marginaali.
  • EU-betoni - Ilmaisee betonin likimääräisen painon keskimääräisen tiheyden mukaan.
  • Maakohtainen kuormitus perustuksesta - hajautettu kuorma koko tukialustalle.
  • Vahvistustangon halkaisijan vähimmäis halkaisija - Vähimmäisläpimitta SNiP: n mukaan ottaen huomioon levyn poikkipinta-alan raudoituksen suhteellinen sisältö.
  • Pystyvahvistustangojen vähimmäis halkaisija on SNiP: n mukainen pystysuuntaisten lujitangojen halkaisija.
  • Mesh mesh size - Vahvikotelon keskimääräinen silmäkoko.
  • Ylitysraudoituksen koko - Kun vanteiden segmenttien kiinnitys on päällekkäin.
  • Kokonaisraudoituspituus - Koko raudoituksen pituus runkopäällystykselle, ottaen huomioon päällekkäisyydet.
  • Yleinen vahvistuspaino - Rebar-paino.
  • T-muottilevyn paksuus - GOST R 52086-2003: n mukaisten muottilevyjen arvioitu paksuus tietyille perusparametreille ja tietyn tukivaiheen osalta.
  • Muottipaneelit - Materiaalin määrä tiettyä kokoa varten.

UWB: n laskemiseksi on tarpeen vähentää eristyseristyksen määrää lasketun betonin tilavuudesta.

Kuormien kerääminen lattialaattaan

  • Vahvistettu betoni monoliittinen lattialaatta laskeminen
  • Ensimmäinen vaihe: levyn arvioidun pituuden määrittely
  • Lujitetun betonin monoliittisen päällekkäisyyden geometristen parametrien määrittäminen
  • Olemassa olevat kerättävät kuormat
  • Määritä maksimi taivutusmomentti normaali (poikkileikkaus) palkki
  • Jotkut vivahteet
  • Vahvistusosan valinta
  • Vahvojen lukumäärä monoliittisten teräsbetonilaattojen vahvistamiseksi
  • Kuormien kerääminen - joitain lisä laskelmia

Vahvistettu betoni monoliittinen lattialaatta laskeminen

Vahvistetut betoni- monoliittiset laatat, huolimatta siitä, että valmiit laatat ovat riittävän suuret, ovat edelleen vaatimuksia. Varsinkin jos se on oma yksityisasunto, jossa on ainutlaatuinen asettelu, jossa kaikissa huoneissa on erikokoisia tai rakentamisprosessi toteutetaan ilman nostureita.

Monoliittiset laatat ovat melko suosittuja, erityisesti yksittäisten rakennusten maalaistalojen rakentamisessa.

Tällaisessa tapauksessa monoliitti- sestä betoniteräksestä valmistetun levyn avulla voidaan vähentää merkittävästi kaikkien tarvittavien materiaalien hankkimiseen tarvittavia varoja, niiden toimitusta tai asennusta. Tällöin kuitenkin enemmän aikaa voidaan käyttää valmistelutöihin, joista osa on muottiyksikkö. On syytä tietää, että ihmiset, jotka alkavat laatoituksen betonoitua, eivät ole lainkaan estyneet.

Tilaus, betoni ja muotti on nyt helppoa. Ongelma on se, että jokainen henkilö ei voi määrittää, millaista raudoitusta ja betonia tarvitaan tällaisen työn suorittamiseen.

Tämä aineisto ei ole toiminnan opas, vaan se on luonteeltaan puhtaasti informatiivinen ja sisältää vain esimerkin laskelmista. Kaikki raudoitetun betonin rakenteiden laskutoimitukset on normalisoitu SNiP 52-01-2003 "Vahvistettu betoni- ja betonirakenteet. Tärkeimmät säännökset ", samoin kuin säännöt SP 52-1001-2003" Vahvistettu betoni ja betonirakenteet ilman vahvistusta etukäteen ".

Monoliittinen laatta on koko alueelle vahvistettua muottirakennetta, joka kaadetaan betonilla.

Kaikkien kysymysten osalta, joita saattaa syntyä raudoitettujen betonirakenteiden laskemisessa, on tarpeen viitata näihin asiakirjoihin. Tämä materiaali sisältää esimerkin monoliittisten teräsbetonilaattojen laskemisesta näiden sääntöjen ja määräysten suositusten mukaisesti.

Esimerkki raudoitettujen betonilaattojen ja kaikkien rakennusten rakenteen laskemisesta koostuu useista vaiheista. Niiden ydin on tavallisten (poikkileikkaus), lujuusluokan ja betoniluokan geometristen parametrien valinta, joten suunniteltu laatta ei romahda mahdollisimman suuren kuormituksen vaikutuksesta.

Esimerkki laskennasta tehdään osalle, joka on kohtisuorassa x-akseliin nähden. Paikallista puristusta, poikittaisvoimia, työntövoimaa, vääntöä (ryhmän 1 raja-arvoja), halkeaman avaamista ja muodonmuutoslaskelmia (ryhmän 2 raja-arvoja) ei tehdä. Etukäteen on välttämätöntä olettaa, että tavalliselle litteälle lattialle asuinkerrostalossa tällaisia ​​laskelmia ei tarvita. Yleensä, miten se todella on.

Sen pitäisi olla rajoitettu vain taivutusmomentin normaalin (poikkileikkaus) osan laskemiseen. Ne ihmiset, jotka eivät tarvitse selityksiä geometristen parametrien määrittelystä, suunnittelumallien valinnasta, kuormien keräämisestä ja suunnitteluarvioista, voivat siirtyä välittömästi osiin, jossa on esimerkki laskelmista.

Takaisin sisällysluetteloon

Ensimmäinen vaihe: levyn arvioidun pituuden määrittely

Laatta voi olla mitä tahansa pituutta, mutta palkin pituus on jo tarpeen laskea erikseen.

Todellinen pituus voi olla mitä tahansa, mutta arvioitu pituus, toisin sanoen palkin pituus (tässä tapauksessa lattialevy) on toinen asia. Span on valaisimen kantavien seinämien välinen etäisyys. Tämä on huoneen pituus ja leveys seinästä seinään, joten määritettäessä teräsbetoni-monoliittisten kerrosten span on melko yksinkertainen. Se on mitattava nauhamittauksella tai muilla käytettävissä olevilla työkaluilla tällä etäisyydellä. Todellinen pituus kaikissa tapauksissa on suurempi.

Monoliittista teräsbetonilaattaa voidaan tukea tukiseinillä, jotka on tehty tiilestä, kivestä, hiekkakivestä, sardeldiittibetonista, vaahdosta tai hiilihapotetusta betonista. Tällöin ei kuitenkaan ole kovin tärkeää, jos tukiseinät on sovitettu materiaaleista, joilla ei ole riittävää lujuutta (hiilihapotettu betoni, vaahtobetoni, sementtilohko, laajennettu savibetoni), on myös tarpeen kerätä lisää kuormia.

Tässä esimerkissä on laskelma yhden kerroksen lattialaattaan, jota tuetaan kahdella tukiseinällä. Tässä materiaalissa ei oteta huomioon laskelmaa teräsbetonista, joka on tuettu pitkin ääriviivaa, ts. 4 seinämissä tai monisäikeisiin laatoihin.

Jotta edellä mainittu olisi parempi assimiloitu, on arvioitava leveydeltään l = 4 m.

Takaisin sisällysluetteloon

Lujitetun betonin monoliittisen päällekkäisyyden geometristen parametrien määrittäminen

Kuormien laskeminen lattialevyllä tarkastellaan erikseen kullekin rakennustyölle.

Nämä parametrit eivät ole vielä tiedossa, mutta on järkevää asettaa ne, jotta pystyt tekemään laskelman.

Laatan korkeus on h = 10 cm, ehdollinen leveys on b = 100 cm. Tällaisessa tilanteessa edellytys on, että betonilaattaa pidetään palkin korkeudeltaan 10 cm ja leveydeltään 100 cm, joten tuloksia saadaan, voidaan soveltaa kaikkiin jäljellä oleviin levyjen leveyksiin. Toisin sanoen, jos on suunniteltu laatta, jonka arvioitu pituus on 4 m ja leveys 6 m, kunkin 6 m: n tiedon osalta on välttämätöntä soveltaa laskettuihin 1 m: n parametreja.

Betoniluokka on B20 ja lujitusluokka A400.

Seuraavaksi tulee tuettujen määrien määritelmä. Lattialevyllä voidaan katsoa saranoitua tukipalkkia riippuen seinämien lattialaattojen tuen leveydestä, materiaalista ja tukiseinien painosta. Tämä on yleisin tapaus.

Seuraavaksi kerrotaan kuormitusta levylle. Ne voivat olla hyvin erilaisia. Rakenteellisen mekaniikan näkökulmasta katsottuna kaikki, jotka pysyvät liikkumattomina palkkiin, liimataan, naulataan tai ripustetaan lattialevyyn - tämä on tilastollinen ja melko usein vakiokuormitus. Kaikki, jotka vaipuvat, kulkevat, kulkevat, kulkevat ja putoavat palkkiin - dynaamisia kuormia. Tällaiset kuormat ovat useimmiten väliaikaisia. Tässä esimerkissä ei kuitenkaan tehdä eroa pysyvien ja tilapäisten kuormien välillä.

Takaisin sisällysluetteloon

Olemassa olevat kerättävät kuormat

Kuorman kerääminen keskittyy siihen, että kuorma voidaan jakaa tasaisesti, keskittää, jakautua epätasaisesti ja toiseksi. Kuitenkaan ei ole mitään syytä mennä niin syvälle kaikkiin kerättyjen kuormien yhdistelmän olemassa oleviin muunnelmiin. Tässä esimerkissä on tasaisesti jaettu kuormitus, koska tällainen lastauslaattojen tapaus asuinrakennuksissa on yleisin.

Keskittynyt kuormitus mitataan kg-voimilla (CGS) tai Newtonissa. Hajautettu kuorma on kgf / m.

Lattialaatan kuormitus voi olla hyvin erilainen, keskittynyt, tasaisesti jakautunut, epätasaisesti jakautunut jne.

Useimmiten kerrostalot yksityisissä kodeissa lasketaan tietylle kuormalle: q1 = 400 kg per 1 neliömetriä. Levyn korkeuden ollessa 10 cm, levyn paino lisää tähän kuormaan noin 250 kg / neliömetri. Keraamiset laatat ja tasoitteet - jopa 100 kg / 1 m²

Tällaisella hajautetulla kuormalla otetaan huomioon lähes kaikki lattian kuormien yhdistelmät asuinrakennuksessa, joka on mahdollista. On kuitenkin syytä tietää, että kukaan ei kiellä mallia luotettavasta suuresta kuormituksesta. Tässä materiaalissa tämä arvo otetaan ja vain siinä tapauksessa se on kerrottava luotettavuuskertoimella y = 1.2.

q = (400 + 250 + 100) * 1,2 = 900 kg per 1 neliömetriä.

Leveydeltään 100 cm: n levyisen aineen parametrit lasketaan, joten tätä hajautettua kuormitusta pidetään litteänä, joka toimii lattialevyn y-akselilla. Mitattu kg / m.

Takaisin sisällysluetteloon

Määritä maksimi taivutusmomentti normaali (poikkileikkaus) palkki

Kahden saranoidun kannattimen (tässä tapauksessa seinien tukemana oleva lattialaatta, johon kohdistuu tasalaatuiset kuormat) maksimaalinen taivutusmomentti on palkin keskellä. Mmax = (q * l ^ 2/8 (149: 5.1)

Span l = 4 m, Mmax = (900 * 4 ^ 2) / 8 = 1800 kg / m.

On tarpeen tietää, että raudoitetun betoniteräksen laskeminen SP 52-101-2003: n ja SNiP 52-01-2003: n mukaisten toimien rajoittamiseksi perustuu seuraaviin suunnitteluoletuksiin:

Onton vahvistetun levyn rakenne

  1. Betonin vetolujuus on 0. Tällainen oletus perustuu siihen, että betonin vetolujuus on paljon pienempi kuin lujituksen vetolujuus (noin 100 kertaa), joten betonin rikkoutumisesta johtuen rakenteen venytetty alue voi muodostaa halkeamia. Näin ollen vain vahvistus toimii jännitteenä normaalissa osassa.
  2. Betonin kestävyys puristukseen tulisi jakaa tasaisesti puristusvyöhykkeelle. Sitä ei hyväksytä enempää kuin laskettu vastus Rb.
  3. Vetolujuusrajoittumisjännitykset eivät saa ylittää laskettua resistanssia Rs.

Jotta estettäisiin muovisen saranan muodostaminen ja rakenteen kaatuminen, mikä tässä tapauksessa on mahdollista, betonin y puristetun alueen korkeuden suhde E raudan painopisteen etäisyydelle palkin h0 päästä E = y / h0 ei saa ylittää raja-arvoa ER. Raja-arvo olisi määritettävä seuraavalla kaavalla:

ER = 0,8 / (1 + Rs / 700).

Tämä on empiirinen kaava, joka perustuu kokemukseen rakenteiden suunnittelusta teräsbetonista. Rs on vahvistuksen laskettu vastus MPa: ssa. On kuitenkin syytä tietää, että tässä vaiheessa pystyt helposti hallitsemaan betonin pakatun alueen suhteellisen korkeuden raja-arvojen taulukkoa.

Takaisin sisällysluetteloon

Jotkut vivahteet

Taulukossa oleviin arvoihin on merkintä, jonka esimerkki sisältyy materiaaliin. Jos laskentamallien kerääminen ei ole ammattimainen muotoilija, on suositeltavaa laskea pakatun ER-alueen arvot noin 1,5 kertaa.

Lisälaskenta tehdään ottaen huomioon a = 2 cm, missä a on etäisyys palkin pohjasta lujituksen poikkipinta-alan keskelle.

Kun E on pienempi tai yhtä suuri kuin ER ja puristusvyöhykkeellä ei ole vahvistusta, betonin lujuus on tarkastettava seuraavan kaavan mukaisesti:

B M = 180 000 kg / cm, kaavan mukaan. 36

3600 * 7,69 (8 - 0,5 * 2,366) = 188721 kg / cm> M = 180 000 kg / cm, kaavan mukaan.

Lattian asettaminen monoliittisen vahvistetun lattialevyn päälle

Kaikki tarvittavat vaatimukset täyttyvät.

Jos betonin luokka kasvaa B25: een, vahvistus tarvitsee pienemmän määrän, koska B25 Rb = 148 kgf / cm sq. (14,5 MPa).

am = 1800 / (1 * 0,08 ^ 2 * 1480000) = 0,19003.

As = 148 * 100 * 10 (1 on juuren neliö (1 - 2 * 0.19)) / 3600 = 6,99 neliömetriä.

Näin ollen olemassa olevan lattialaatan 1 pm: n vahvistamiseksi sinun on vielä käytettävä 5 sauvaa, joiden halkaisija on 14 mm 200 mm: n välein tai jatka valitsemaan osaa.

On todettava, että laskelmat ovat varsin yksinkertaisia, eivätkä ne vie paljon aikaa. Tämä kaava ei kuitenkaan ole selvempi. Ehdottomasti mikä tahansa betonirakenne voidaan periaatteessa laskea klassisen, eli äärimmäisen yksinkertaisen ja visuaalisen kaavan perusteella.

Takaisin sisällysluetteloon

Kuormien kerääminen - joitain lisä laskelmia

Kuormien kerääminen ja monoliittisten lattialevyjen vahvuuden laskeminen usein kaventuu vertaamalla kahta tekijää toisiinsa:

  • jotka vaikuttavat laattoihin;
  • vahvuus vahvistaa sen osia.

Ensimmäisen täytyy välttämättä olla pienempi kuin toinen.

Määritelmä momenttihaasteiden kuormitetuissa osissa. Momentti, koska taivutusmomentit määräävät 95% taivutuslevyjen vahvistamisesta. Kuormitetut osat - keskiosan keskiosa tai toisin sanoen levyn keskiosa.

Taivutusmomentit neliömäisessä levyssä, jota ei ole puristettu ääriviivaa pitkin (esimerkiksi tiiliseinien päälle), voidaan määrittää kullekin suunnalle X ja Y: Mx = My = ql ^ 2/23.

Tietyissä tapauksissa voit saada tiettyjä arvoja:

  1. Levy mitattuna 6x6 m - Mx = My = 1,9 tm.
  2. Levy mitattuna 5x5 m - Mx = Oma = 1,3 m.
  3. Levy 4x4 m - Mx = Oma = 0,8 tm.

Lujuuden tarkistamisen yhteydessä katsotaan, että osassa on puristettua betonia päältä sekä vetolujuus alareunassa. He pystyvät muodostamaan tehoparin, joka tuntee sen hetken, kun se tulee siihen.

Esittely Potolku Body

Laskin laskemaan pääraudoituksen määrää laattaperusteille

Määritettäessä mitä tahansa pohjaa ja laatua - erityisesti on tärkeää määrittää etukäteen tarvittava määrä materiaaleja sen rakentamiseen. Edellytyksenä on aina laadukas vahvistaminen, joka tässä tapauksessa on useimmiten ristikkorakenne, jossa on kohtisuorassa sidotut sauvat, joissa on jaksollinen helpotus, halkaisijaltaan 10 mm tai enemmän.

Laskin laskemaan pääraudoituksen määrää laattaperusteille

Vahvistus, jonka levyn paksuus on 150 mm tai vähemmän, suoritetaan keskellä sijaitsevassa kerroksessa. Kuitenkin useammin on käsiteltävä suurempia paksuisia levyjä, ja täällä tarvitaan jo kaksikerroksinen rakenne. Se vie paljon materiaalia, ja tällaisen hankinnan suunnittelussa laskin, jolla lasketaan laattojen perustusten päävahvistuksen määrä, tulee olemaan hyvä avustaja.

Alla on muutamia välttämättömiä selvityksiä laskelmien järjestyksestä.

Laskin laskemaan pääraudoituksen määrää laattaperusteille

Laskelmien selitys

  • Jos ongelma ratkaistaan ​​asennusvaiheella ja vahvistuspalkkien halkaisijan avulla, lisälaskelma pienenee tavallisimpiin geometrisiin laskelmiin.

Kuinka määritellä lujitustangojen optimaalinen halkaisija ja niiden asennusvaihe?

Tätä tarkoitusta varten erikoislaskin laatoitusperustaisen raudoituksen läpimitan laskemiseksi sijoitetaan portaalin sivuille - noudata tarvittaessa linkkiä.

  • Yhden tai kahden kerroksen vahvistusrakenne voidaan laskea.
  • Laskentaohjelmassa otetaan huomioon, että 50 mm: n vaaditun tyhjennys havaitaan perustalevyn reunasta lujarakenteeseen.
  • Lopputuloksena on otettava huomioon 10 prosentin marginaali, joka vaaditaan päällekkäisyyksien luomiseksi käytettäessä kahta tai useampaa tankoa yhdellä rivillä.
  • Tulokseksi saadaan yhteensä metreinä ja lasketaan uudelleen standardipituuden - 11,7 metrin pituisten sauvien lukumäärä.

Tarvitseko lasketun määrän muuntaminen kiloiksi ja tonniksi?

Jotkut metalliä myyvät yritykset julkaisevat hintaluettelonsa hinnankorotuksilla ilmaistuna metallin tonnin hinnalla. Se on okei - erityinen laskin auttaa sinua nopeasti laskemaan tarvittavan raudan määrän painoarvoineen.

Suositeltavat artikkelit

Jousiammunta-laskin

Betonimäärälaskuri panssaroidun vyön kaatamiseksi

Laskin tiilien lukumäärän laskemiseen muuraus kellariin

Laskin betonin määrän laskemiseksi metallipylväiden asentamiseksi aitaukseen

Betonin koostumus kellarin mittasuhteille - kätevät online laskimet

Laskin ilmanvaihdon normien laskemiseen

Johdinten määrä laskin nauhan perustuksen vahvistamiseksi

Ruuvipilalaskuri

Lataa pylväs- tai pylvässäätiön latauslaskuri

Rebar Laskin Slab Foundations

Laskin laskettaessa tangojen vähimmäispaksuutta laattapohjan päävahvistukselle

Laskin monoliittisen pohjalevyn optimaalisen paksuuden laskemiseksi